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Abstract-Laminar heat transfer in a separating and reattaching flow was numerically studied by simulating 
the flow and heat transfer downstream of a backward-facing step. A series of computations was conducted 
in which three principal parameters governing the heat transfer in this geometry (i.e. channel expansion 
ratio ER, Reynolds number Re and Prandtl number Pr) were systematically changed. As a result, detailed 
relations between these parameters and the fundamental heat transfer characteristics have been elucidated. 
Some important findings are: (I) the distribution of the local Nusselt number depends strongly on all of 
these parameters; (2) the peak of the local Nusselt number does not necessarily locate at or very near the 
point of Row reattachment, in contrast to the common belief; and (3) if the Prandtl number is considerably 
low, the peak itself does not even appear and hence the heat transfer enhancement, usually assumed around 

the flow reattachment point, can never be expected in such cases. 

1. INTRODUCTION 

FLOW SEPARATION and subsequent reattachment exert 
an important influence on the mechanism of heat 
transfer. In some cases, they have a harmful effect 
such as uneven heat loading in thermal equipment, 
but in others, they produce a beneficial effect like heat 
transfer enhancement around the flow reattachment 
point. Thus, in engineering practice, it is quite essen- 
tial to understand the basic mechanism of heat trans- 
fer in separating and reattaching flows. 

A backward-facing step is one of the most fun- 
damental geometries where the flow separation and 
reattachment occur, and accordingly, innumerable 
studies have been conducted in relation to this 
geometry. Nevertheless, most of them were concerned 
only with the flow, and our understanding of heat 
transfer seems still immature. Even at present, we have 
not fully settled the most fundamental problem, such 
as the question on the relation between the points of 
maximum heat transfer and flow reattachment. 

Hitherto it has often been assumed that the peak of 
heat transfer occurs at or very near the point of flow 
reattachment. There are, however, several flaws in 
this assumption as recently presented by Sparrow and 
Chuck [l] and Sparrow et al. [2]. Their results, 
obtained both experimentally and numerically, indi- 
cate that this assumption is at best a special case. 
Sparrow and Chuck [I] also demonstrated firstly that 

the variation of the local Nusselt number with the 
Reynolds number took on different forms at various 
axial distances from the enlargement step. Although 
their results are very useful, the calculations covered 
rather limited ranges of the Reynolds number and the 
channel expansion ratio ; besides, the influence of the 
Prandtl number was not considered at all. 

In the present research, a more advanced study was 

undertaken on the heat transfer in laminar separating 
and reattaching flows. A series of computations was 
conducted in which three principal parameters 

governing the heat transfer in this geometry (i.e. chan- 
nel expansion ratio ER, Reynolds number Re and 
Prandtl number Pr) were systematically changed. 
Special attention was paid to how the location of 
the maximum heat transfer relative to the flow- 
reattachment point varies with these parameters. In 
particular, the influence of the Prandtl number, 
never having been treated precisely although it is 
quite an important problem, was most extensively 
studied by dealing with its value ranging from quite 
low to extremely high. 

2. GOVERNING EQUATIONS AND 
COMPUTATIONAL METHOD 

The two-dimensional incompressible Newtonian 
flow with heat transfer was considered, which is 
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NOMENCLATURE 

ER channel expansion ratio, WJW, 
I1 step height 
Nu local Nusselt number on heat transfer 

surface (lower wall downstream of 
slep). u/r/l 

NU mean of NU in recirculating region, 
{ s ;;I Nu(s) ds)/X, 

N4, NLI al step location (s = 0) 
Nu,;,, maximum of Nu 
P 
Pe 
PI 
Re 

T 
I 
T, 
TW 

u, 

II 

pressure 
Peclet number, Rc PI 
Prandtl number 
Reynolds number based on inlet flow 
velocity. II, h/v 
temperature 
time 
temperature at inlet boundary 
temperature of heat transfer surface 
(lower wall downstream of step) 
external uniform velocity (in case of 
boundary layer type inflow) or mean 
velocity (in case of fully developed 
inflow) at inlet boundary 
velocity vector 

II’, ( 11’2 channel widths upstream and 
downstream of step 

x* .Y where local Nusselt number peaks (s 
for Nu,,.) 

XR .Y where flow reattaches (s for flow 
reattachment point or flow 
reattachment length) 

s coordinate in mainstream direction with 
s = 0 at step location 

?’ coordinate perpendicular to mainstream 
direction with JJ = 0 at step bottom. 

Greek symbols 
u local heat transfer coefficient on 

heat transfer surface (lower 
wall downstream of step), 
-j.(~T/ci?,),.=,,/(T,~-T,) 

6, thickness of thermal boundary layer, 
r;? 0 d?- 

0 dimensionless temperature, 
(T- T,MTw- 7.1) 

IL thermal conductivity 
1’ kinematic viscosity 
P density. 

Mathematical symbol 
V vector differential operator, 

(a/as, a/a)+. 

described by the following equation of continuity (I), 
the Navier-Stokes equation (2) and the energy equa- 
tion (3) 

v-u=0 (1) 

au 
z +(u'v)u = -vp+ &Qu 

SO 
r +(ll.v)o = &vo. 

In the above equations, f, V, II, p and 0 are the time, 
the vector differential operator, the velocity vector, 
the pressure and the temperature, respectively, all 
nondimensioned by the appropriate reference quan- 
tities. Re and Pr are the Reynolds and the Prandtl 
numbers. 

Though only the steady-state solutions were desired, 
the time-dependent form of the equations was pre- 
ferred so that they would be naturally realized as 
the asymptotic limit of the time-developing solutions. 
Thus, equations (2) and (3) were time-integrated to 
obtain the velocity and the temperature distributions, 
u and 0. As for the pressure distribution p, we used 
the Poisson form of the equation, which is derived 
from equations (1) and (2), and is expressed as 

1 

i;(V * u) 
V?p = -vu:(vu)*- dl 

where the superscript * denotes the transposition of a 
tensor and the colon represents the scalar product of 
two tensors, i.e. 

au 2 
vu:(vu)* = as +2: $+ E, * 0 

- 2 

. (.> 
(5) 

The last term in the right-hand side of equation (4) 
including V * u, called the dilatation term, was retained 
to compensate for the velocity field deviating from the 
continuity requirement (I). 

The finite-difference method was employed to 
numerically solve the above equations. The spatial 
discretization was made on the nonstaggered (regular) 
grid, where the convection terms were discretized by 
the third-order-accurate upwind scheme [3], and the 
other spatial derivatives were evaluated by the central 
differences. The Crank-Nicolson scheme was used for 
the time integration. The matrix equations resulting 
from the discretization of the governing equations 
were solved with the successive over-relaxation 
method. 
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3. COMPARISON WITH PREVIOUS 

EXPERIMENTAL AND COMPUTATIONAL 

RESEARCH 

Aung [4] conducted experiments on the laminar 
heat transfer in backward-facing step geometry for 
various step heights and the Reynolds numbers. For 
some of these measurements, Hall and Pletchcr [S] 
performed comparative calculations using the vis- 
cous-inviscid interaction procedure, and Chiu and 
Pletcher [6] made a similar calculation based on the 
partially parabolized Navier-Stokes equation. Thus, 
in order to assure the reliability of the calculations, 
the predictions with the present method have been 
compared with these previous experiments and com- 
putations before carrying out a systematic numerical 
experiment. 

Computations were made for two cases of step 
height, i.e. 6.4 and 12.7 mm, in Aung’s experiment, 
where the channel width upstream of the step, II’, , was 
kept constant at 200 mm. The computational domain 
was set over 305 mm upstream of the step and 305 
mm downstream thereof. The temperature through- 
out on the step-side (lower) wall was kept constant in 
accord with the experimental conditions. The momen- 
tum thickness of the boundary layer at the inlet 
boundary (305 mm upstream of the step) was speci- 
fied, by referring to the conventional equation describ- 
ing the development of the laminar boundary layer 
on a flat plate, so that the thickness of the boundary 
layer at the step location would match the measurc- 
ment. 

Figure I compares the temperature profiles in the 
recirculating region downstream of the step. In the 
case of a lower step height (/I = 6.4 mm, Re = 178) 
shown in Fig. l(a), the results of the present com- 
putation agree quite well with the experiment except 
for a slight difference near the wall at the section 
closest to the step (s/X, = 0.14). In the case of a 
higher step height (/I = 12.7 mm, Re = 233) shown in 
Fig. l(b), some discrepancy exists between the cal- 
culations and the measurements in the middle of the 
recirculating region (s/X, = 0.482 and 0.694). But the 
previous computations made by Hall and Pletcher [5] 
and Chiu and Pletcher [6] also suffer from a similar 
discrepancy, which might suggest that some exper- 
imental uncertainty is involved in the measurements. 
At the other two locations (s/X, = 0.946 and I .210). 
however, the present results agree well with the exper- 
imental data. 

4. SYSTEMATIC NUMERICAL EXPERIMENT 

There are three important parameters which exert 
a great influence on the fluid mechanics and heat 
transfer in a backward-facing step geometry, i.e. 
Reynolds number Re, channel expansion ratio ER 
and Prandtl number Pr. Thus, the influence of these 
parameters on the heat transfer has been studied by 
numerical simulation, in which the parameters were 

given the following values : 

Re = {l0,~0,50,l00,200,500) (6) 

ER = { I .25. 1.5, 1.67.2) (7) 

Pr = {O.O.OOOl. O.OOl,O.Ol. 0.04.0.08,O.l. 

0.4,0.7,7, IO, 100. 1000). 63) 

As only the laminar flow was to be considered, the 
Reynolds number was examined up to 500. The chan- 
nel expansion ratio was provided with four values. 
The Prandtl number was given a very wide range of 
values. The cast of RP = 100, ER = I .5 and Pr = 0.7 
was taken as the reference condition, and each par- 
ameter was varied systematically. 

The domain of computation was set over IO step 
heights upstream of the step and 50 downstream there- 
of. The computational grid had nonuniform line 
spacings, having 60 grid lines in the mainstream direc- 
tion and 30 across the channel. The grid lines were 
concentrated in the neighborhood of the wall, the 
minimum spacings of the grid being As,,, = 0.1 in the 
mainstream direction and A)‘,,,,, = 0.05 in the trans- 
verse direction. To confirm the numerical accuracy, 
the line spacing was cut in half. Figure 2 shows the 
grid dependence of the calculated distributions of the 
local Nusselt number for the reference case (Re = 100, 
ER = 1.5, Pr = 0.7) and one of the most com- 
putationally difficult cases (Re = 500, ER = 1.5, 
Pr = 7). The broken lines correspond to the results 
obtained with a grid having twice as many (120 by 60) 
grid lines in each coordinate direction as the standard 
(60 by 30) grid. Evidently, the difference due to the 
grid fineness is very small, and hence the 60 by 30 
grid was employed for computational efficiency in the 
following numerical experiment, except in the large 
Prandtl number cases (Pr 2 IO) for which the 85 by 
60 grid was adopted. In this finer grid, the minimum 
spacings of the grid were As,,, = 0.02 and 
A.rm,n = 0.01. The adequacy of the spatial resolution 
in very high Prandtl number cases, especially in the 
transverse direction above the heat transfer surface, 
was confirmed in the following way: in the case of 
Pr = 1000 with Re = 100, where the temperature field 
was supposed to show the steepest spatial gradient of 
all the present numerical experiments, the com- 
putation was conducted with a coarser 60 by 40 grid. 
The results were compared with those of the 85 by 60 
grid, but no essential differences were found between 
the two. 

The boundary conditions were as follows: at the 
inlet boundary, the velocity field was assumed to be 
fully developed with the uniform temperature T,, and 
the pressure boundary condition was specified as 
~~‘JI/?I,K’ = 0. At all of the wall boundaries, the no-slip 
condition was specified for the velocity. The pressure 
on the wall boundary was described by the momentum 
equation (2) with substitution of the no-slip boundary 
condition, i.e. 8p/~?n = (l/Re)d’u,,/&r’, where n de- 
notes the inward normal of the wall boundary. The 
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FIG. I. Comparison of temperature profiles downstream of step with Aung’s experiments : (a) h = 6.4 mm 
(Re = 178) ; (b) h = 12.7 mm (Re = 233). 

temperature at the step-side (lower) wall downstream 4.1. Overview of velocityfield 
of the step was kept constant at T,, which was The velocity field around the enlargement step cal- 
assumed to be higher than T,. The other part of the culated for the reference case (the channel expansion 
wall was treated as adiabatic. At the outlet boundary, ratio of ER = 1.5 and the Reynolds number of 
the first derivative of the velocity and the second Re = 100) is presented in Fig. 3. The flow-reattach- 
derivative of the temperature were assumed to vanish. ment point is located at x/h z 6.3, as visualized by 
The pressure was specified to be constant. the dividing streamline superposed in the velocity 
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30 1 
xlh 

FIG. 2. Grid dependence of calculated distribution of local Nusselt number: (a) Re = 100, ER = 1.5, 
Pr=0.7;(b)Re=SOO,ER=lS,Pr=7. 
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FIG. 3. Overview of velocity field (ER = 1.5, Re = 100). 

vector distribution. The predicted reattachment 
length (6.3) is slightly longer than the experimental 
value of 6.0 [7]. But, because many of the earlier 
computations also gave a longer reattachment 
length than the experiment [7], some experimental 
uncertainty might be involved in the measurements. 
The flow in the recirculating region is very quiet, where 
the maximum reversed velocity is less than 10% of the 
mean velocity of the upcoming flow. This is quite in 
contrast to the turbulent flow case, where there is 

a strong and irregularly fluctuating flow [8]. After 
reattachment, the flow on the lower wall redevelops 
gradually to recover the fully developed state at 
x/h z 15. 

4.2. Influence of Reynolds number and channel expan- 
sion ratio 

Figure 4 shows the influence of the Reynolds 
number, Re, on the local heat transfer distribution. 
The channel expansion ratio, ER, and the Prandtl 

(a) 

I I 

I 
30 

zlh 
40 

FIG. 4. Influence of Reynolds number on local heat transfer distribution (ER = 1.5, Pr = 0.7) : (a) Nu vs 
x/h; (b) Nu vs x/X, ; (0) point of maximum heat transfer. 
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number, Pr, are fixed at 1.5 and 0.7, respectively, 
corresponding to the reference condition. The dis- 
tribution of the local Nusselt number, Nu, on the heat 
transfer surface (lower wall downstream of the step) 
is shown in Fig. 4(a), in which the abscissa is the 
distance from the step normalized by the step height. 
For all of the Reynolds numbers, Nu first increases 
and then decreases. As the Reynolds number 
increases, the peak in the Nu distribution moves 
downstream accompanied by the consistently growing 
peak value. This movement of the peak values of Nu 
seems to be related to the movement of the flow- 
reattachment point. Thus, Nu is replotted in Fig. 4(b) 
with the abscissa (distance from the step) normalized 
by the flow reattachment length X,. In contrast to the 
common belief, the peak value of Nu, indicated by the 
symbol ‘0’ in the figure, is not always located very 
near the flow-reattachment point. At Re = 20, for 
example, the distance between the peak location of 
NW and the flow-reattachment point amounts to about 
30% of the flow reattachment length. Figure 4 indi- 
cates that the relationship between these two locations 
depends considerably on the Reynolds number. 

Figure 5 shows how the overall characteristics of 
the heat transfer vary with the Reynolds number. As 
the Reynolds number increases, the peak location of 
Nu relative to the flow-reattachment point, X*/X,, 
first moves downstream, and then moves back 
upstream beyond the flow-reattachment point. This 
movement of the peak location of Nu at higher Rey- 
nolds numbers is reasonable, since at much higher 
Reynolds numbers, i.e. in the turbulent flow case, 
the peak value of Nu is known to occur somewhat 
upstream of the flow-reattachment point [9]. The peak 
value of the Nusselt number, Nu,,,, increases to the 
power of the Reynolds number, on the whole. and the 

mean Nusselt number in the recirculating region, Nu, 
increases accordingly. The local Nusselt number in 
the upstream part of the recirculating region, on the 
other hand, as represented by the Nusselt number at 
the step location, Nu,, decreases with the Reynolds 
number. 

The variation of the overall heat transfer charac- 
teristics with the Reynolds number, described above, 
can be interpreted by the temperature distributions 
presented in Fig. 6. As shown in the figure, under 
the influence of the reattaching flow, the temperature 
contours undergo local distortion around the flow- 
reattachment point. In other words, the thermal 
boundary layer is compressed by the reattaching wall- 
ward flow. As a result, a layer with steep temperature 
gradient is formed above the wall around the flow- 
reattachment point, which leads to the heat transfer 
enhancement there. On the other hand, just behind 
the enlargement step, the temperature variation is con- 
centrated in the separating shear layer, because the 
recirculating flow continues to convey there the high- 
temperature fluid generated on the heat transfer 
surface. Hence the temperature gradient just above 
the heat transfer surface becomes rather small, which 
results in the poor heat transfer there. These features 
of the temperature field become more distinct as the 
Reynolds number increases. This is why the overall 
characteristics of the heat transfer vary with the 
Reynolds number as in Fig. 5. 

Figure 7 shows the influence of the channel expan- 
sion ratio, ER, on the local heat transfer distribution. 
The Reynolds number, Re, and the Prandtl number, 
Pr, are fixed at 100 and 0.7, respectively, cor- 
responding to the reference condition. As ER 
increases, or equivalently, the upstream channel width 
decreases, the peak location of Nu moves upstream 

10’ 10” Re 10s 

FIG. 5. Variation of heat transfer characteristics with Reynolds number (ER = 1.5, Pr = 0.7). 
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and the peak value grows consistently (Fig. 7(a)). This 
movement of the peak location of Nu is regarded again 
to be due to the movement of the flow-reattachment 
point, since the latter moves upstream with the 
increase of ER (not shown here). Then, Nu is replotted 
in Fig. 7(b) with the abscissa normalized by the flow 
reattachment length. It can be recognized that the 
peak value of Nu occurs slightly downstream of the 
flow-reattachment point and moves relatively closer 
to the flow-reattachment point as ER increases. 

Figure 8 shows how the overall characteristics of 
the heat transfer vary with the channel expansion 
ratio. The peak value of the local heat transfer, Nu,,,, 

increases consistently with ER. This is naturally 
understood by the fact that the compression of the 
thermal boundary layer by the reattaching flow 
becomes stronger with increasing ER as shown in 
Fig. 9. The mean Nusselt number in the recirculating 
region, %, also increases with ER, but the Nusselt 
number in the upstream part of the recirculating 
region, Nu,,, decreases. 

4.3. Influence of Prandtl number 
The influence of the Prandtl number on the heat 

transfer in a separating and reattaching flow has not 
been studied extensively so far, although it seems quite 
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FIG. 6. Variation of temperature distribution with Reynolds number (ER = 1.5, Pr = 0.7) : (a) Re = IO; 
(b) Re = 20; (c)  Re = 50; (d) Re = 100; (e) Re = 200; (f) Re = 500; (A) point ofgow reattachment. 
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xlh 

FIG. 7. Influence of channel expansion ratio on local heat transfer distribution (Re = 100, Pr = 0.7): 
(a) Nu vs x/h ; (b) Nu vs x/X, ; (0) point of maximum heat transfer. 
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FIG. 8. Variation of heat transfer characteristics with channel expansion ratio (Re = 100, Pr = 0.7). 
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W 

FIG. 9. Variation of temperature distribution with channel expansion ratio (Re = 100, Pr = 0.7): 
(a) ER = 1.25; (b) ER = 1.50: (c) ER = 1.67; (d) ER = 2.00; (A) point of flow reattachment. 

an important problem. One of the reasons for this 
may be the experimental difficulty in dealing with 
fluids having various Prandtl numbers. But today, as 
far as the laminar flow is concerned, it is not difficult 
to investigate the temperature field by numerical 
simulation. Thus, a series of computations has been 
conducted using Prandtl numbers ranging from quite 
low to extremely high, as indicated at the beginning 
of this section (see equation (8)). The Reynolds 
number, Re, and the channel expansion ratio, ER, 
were fixed at 100 and 1 S, respectively, corresponding 
to the reference condition. On the basis of the numeri- 
cal results, the influence of the Prandtl number on the 
temperature distribution and the fundamental heat 
transfer characteristics was investigated in detail. 

Figure IO shows the temperature distribution for 
various Prandtl numbers. The curves in the figure 
correspond to the temperature contours with a non- 
dimensional temperature increment of A0 = 0. I. The 
following points describe how the temperature field 
changes with the Prandtl number. 

(I) I f  the Prandtl number is considerably low, i.e. 
for Pr 6 0.001 (or Pe d O.l), the whole temperature 
field is governed by heat conduction. In this Prandtl 
number range, the influence of the heating surface 
(lower wall downstream of the step) reaches as far as 
the upcoming boundary, as shown in Figs. IO(b) and 
(c). Then the temperature distribution is substantially 
equal to the pure conduction field (Pr = 0) shown 

in Fig. 10(a), which was calculated from Laplace’s 
equation (V’O = 0). 

(2) In the Prandtl number range 0.001 6 Pr 2< 0.1 
(or 0.1 ,< Pe < IO), the temperature field receives the 
influence of both heat conduction and convection sim- 
ultaneously. As shown in Figs. IO(d)-(f), the con- 
vection becomes more effective with an increase of the 
Prandtl number, which emerges as the behavior of 
the temperature contours in the main stream region 
moving downstream quite rapidly with the Prandtl 
number. 

(3) For the Prandtl number range 0.1 c Pr < I (or 
10 < PC $ IOO), the convection effect becomes domi- 
nant in most of the region except in the recirculating 
region where the temperature is still largely controlled 
by heat conduction. In this Prandtl number range, the 
influence of the low-wall heating no longer reaches 
the upper wall (at least to the extent displayed in the 
figure), which leads to the formation of the tem- 
perature boundary layer above the heat transfer 
surface. This temperature boundary layer does not 
grow monotonically in the downstream direction, as 
visualized in Figs. IO(g) and (h) ; in fact, it is thinnest 
around the flow-reattachment point (s/h = 6.3). 

(4) If  the Prandtl number further increases, i.e. 
for Pr 3 1 (or Pe 3 IOO), the temperature field is 
governed much more by convection ; the thermal lay- 
ers are formed here and there, i.e. on the heat transfer 
surface, on the side surface of the step, and also in the 
separating shear layer just behind the step, as shown 
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FIG. 10. Temperature distribution for various Prandtl numbers: (a) Pr = 0; (b) Pr = 0.0001 ; (c) 
Pr = 0.001; (d) Pr = 0.01; (e) Pr = 0.04; (f) Pr = 0.1; (g) Pr = 0.4; (h) Pr = 0.7; (i) Pr = IO; (j) 
Pr = 100; (k) Pr = 1000; lines correspond to temperature contours with nondimensional temperature 

increment of AB = 0. I ; (A) point of flow reattachment. 
(Conrinued over) 
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in Figs. 10(i) and (j). The more the Prandtl number 
increases, the thinner these thermal layers become, as 
shown in Fig. 10(k). 

Figure 11 shows how the ‘thermal front’, defined 
here as the external or upstream boundary of the 
region where the influence of heating surface reaches, 
varies with the Prandtl number. The lines in the figure 
indicate the contours of nondimensional temperature 

0 = 0.01 for various Prandtl numbers. For Pr 6 
0.001, as stated above, the influence of the heating 
surface reaches as far as the upstream incoming 
boundary. When the Prandtl number increases to 
0.04, the thermal front descends to the step location. 
Then, in the Prandtl number range 0.1 1< Pr < 0.7, 
it moves further downstream quite rapidly with the 
Prandtl number. At a Prandtl number greater than 1, 
the thermal boundary layer appears above the heat 

- 10 0 10 
r/h 

20 30 

FIG. I I. External bound of region which receives influence of heating surface for various Prandtl numbers 
(Re = 100, ER = 1.5) : lines correspond to contours of nondimensional temperature 0 = 0.01. 
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transfer surface. The thickness of the layer decreases 
consistently with the Prandtl number. 

Figure 12 shows the local heat transfer distribution 
for various Prandtl numbers, in which the local Nus- 
selt number on the heat transfer surface, Nu, is plotted 
against the distance from the step normalized by the 
step height. The following are remarkable features of 
the local heat transfer distribution. 

(1) For Pr 6 0.001 (or Pe < O.l), the distribution 
of Nu does not differ essentially from the pure con- 
duction case (Pr = 0), which again confirms that the 
temperature field is substantially governed by heat 
conduction. 

(2) For 0.001 6 Pr 6 0.1 (or 0.1 4 Pe 6 IO), the 
influence of convection begins to appear in the dis- 
tribution of Nu, but the effect of the reattaching flow is 
still too weak to bring about substantial heat transfer 
enhancement around the flow-reattachment point. At 
Pr = 0.01, the distribution of Nu becomes slightly 
different in quantity from the Pr = 0 case, but it is 
not in quality ; at Pr = 0.04, there appears firstly an 
inflection point in the distribution of Nu, which means 
that the effect of compression of the thermal boundary 
layer by the reattaching flow begins to work. As the 
Prandtl number increases, Nu increases in the whole 
region and the pattern of the Nu distribution changes 
from the monotonically decreasing one into the one 
having a local maximum around the flow-reattach- 
ment point. 

(3) For Pr 3 0.1 (or Pe 2 lo), the substantial heat 
transfer enhancement by the reattaching flow is rec- 
ognized around the flow-reattachment point. At 
Pr = 0.1, the local maximum of Nu around the flow 
reattachment point is approximately comparable with 
NuO (i.e. Nu at the step location) which has occupied 
the global maximum in the lower Prandtl number 
range ; Nu continues to increase with the Prandtl num- 
ber in the whole region and the heat transfer enhance- 
ment around the flow-reattachment point becomes 
more and more remarkable. 

It is usually assumed, in the separating and re- 
attaching flows, that heat transfer is generally enhanced 
around the flow-reattachment point. However, the 
present numerical experiment demonstrated that this 
is not always true; the relation between the points of 
flow reattachment and maximum heat transfer 
depends quite strongly on the Prandtl number. Under 
the conditions considered in the present investigation, 
substantial heat transfer enhancement never occurred 
for a Prandtl number less than 0.1. 

Figure 13(a) shows how the maximum Nusselt 
number, Nu,,,, changes with the Prandtl number in 
its range where substantial heat transfer enhancement 
is recognized, i.e. for Pr 2 0.1. As shown in the figure, 
Numx increases roughly to the power of the Prandtl 
number as Nu,,, a Pro.“. Figure 13(b) shows how 
the mean Nusselt number in the recirculating region, 
%, changes with the Prandtl number. The variation 
of % with the Prandtl number is divided into three 
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FIG. 12. Local heat transfer distribution for various Prandtl 
numbers (Re = 100, ER = 1.5) : (a) Pr = (M.7; (b) 

Pr = 0.7-1000. 

parts. Referring to the temperature distribution 
shown in Fig. 10, the heat transfer mechanism in each 
part is considered. 

(1) The first is the part Pr 6 0.001 (or Pe 2< 0.1) 
where the heat transfer rate stays at quite a low level, 
being substantially equal to that of pure conduction, 
and hardly changes with the Prandtl number. As al- 
ready stated repeatedly, this is because the tempera- 
ture field is substantially governed by heat con- 
duction. 

(2) The second is the part 0.001 6 Pr 6 0.1 (or 
0.1 d Pe 6 lo), where % increases quite rapidly with 
the Prandtl number. In this Prandtl number range, 
under the influence of convection which becomes 
more and more effective with the Prandtl number. the 
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FIG. 13. Variation ofheat transfer characteristics with Prandtl number (Re = 100, ER = 1.5) : (a) maximum 
Nusselt number ; (b) mean Nusselt number in recirculating region. 
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temperature contours are forced to contract above the 
heat transfer surface. And in addition, the surface 
area, which contributes to substantial heat transfer in 
the recirculating region, is urged to spread. As a result, 
Nu increases quite rapidly with the Prandtl number. 
The increase of the heat transfer in this mechanism 
continues until Pr Z. 0.1, when % reaches the level of 
1.0. This value of % is reasonable because it can 
occur if the temperature contours line up horizontally 
with the vertically constant interval behind the step as 
realized in Fig. IO(f). 

(3) The third is the part Pr 2 0.1 (or Pe Z IO), 
where the usually assumed heat transfer enhancement 
by the reattaching flow really occurs. Although the 
increase of % by the previously mentioned mech- 
anism halts around Pr = 0.1, % begins to increase 
again by a different mechanism, i.e. compression of 
the thermal boundary layer by the reattaching flow. 
When the Prandtl number increases beyond unity, the 
effect of convection in the recirculating region further 
accelerates the increase of Nu. 

5. CONCLUSIONS 

The laminar heat transfer in a separating and re- 
attaching flow was numerically studied by simulating 
the flow and heat transfer downstream of the back- 
ward-facing step. A series of computations was con- 
ducted in which three principal parameters governing 
the heat transfer in this geometry (i.e. channel expan- 
sion ratio ER, Reynolds number Re and Prandtl 
number Pr) were systematically changed. As a result, 
detailed relations between these parameters and the 
fundamental heat transfer characteristics have been 
elucidated. 

The influences of the Reynolds number and the 
channel expansion ratio were investigated at a mod- 
erate value of the Prandtl number, i.e. Pr = 0.7. The 
heat transfer enhancement by the reattaching flow was 
observed in all cases treated here. But, in contrast 
to the common belief, the peak of the local Nusselt 
number did not necessarily locate at or very near 
the point of the flow reattachment. Moreover, it was 
demonstrated that the relative location of this peak 
against the flow-reattachment point varies con- 
siderably depending upon both the Reynolds number 
and the channel expansion ratio. 

The influence of the Prandtl number was most 

extensively studied in terms of its range from quite 
low to extremely high, where the Reynolds number 
and the channel expansion ratio were fixed at 100 
and 1.5, respectively. The important features of the 
Prandtl number influence on the heat transfer are : 

(1) if the Prandtl number is considerably low, i.e. 
for Pr < 0.001 (or Pe < 0.1) the whole temperature 
field is substantially governed by heat conduction ; 

(2) for a Prandtl number less than 0.1 (or Pe 6 IO), 
heat transfer enhancement, usually assumed around 
the flow reattachment point, either does not occur, or 
is not essential ; and 

(3) only for the Prandtl number greater than 0.1 (or 
Pe & 10) can substantial heat transfer enhancement 
be realized, where the heat transfer rate increases 
roughly to the power of the Prandtl number; for 
example, the peak value of the local Nusselt number 
increases with the Prandtl number as Numvr cc Pr”.35. 
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